Montage Acoustics HD9001: Quadraphonic FM
In 1969 Louis Dorren invented the Quadraplex system of single station, discrete, compatible four-channel FM broadcasting. There are two additional subcarriers in the Quadraplex system, supplementing the single one used in standard stereo FM. The baseband layout is as follows:
50 Hz to 15 kHz Main Channel (sum of all 4 channels) (LF+LR+RF+RR) signal, for mono FM listening compatibility.
23 to 53 kHz (cosine quadrature subcarrier) (LF+LR) - (RF+RR) Left minus Right difference signal. This signal's modulation in algebraic sum and difference with the Main channel was used for 2 channel stereo listener compatibility.
23 to 53 kHz (sine quadrature 38 kHz subcarrier) (LF+RF) - (LR+RR) Front minus Back difference signal. This signal's modulation in algebraic sum and difference with the Main channel and all the other subcarriers is used for the Quadraphonic listener.
61 to 91 kHz (cosine quadrature 76 kHz subcarrier) (LF+RR) - (LR+RF) Diagonal difference signal. This signal's modulation in algebraic sum and difference with the main channel and all the other subcarriers is also used for the Quadraphonic listener.
95 kHz SCA subcarrier, phase-locked to 19 kHz pilot, for reading services for the blind, background music, etc.
Home radio 1920's
In the 1920s the home radio evolved from a forbidding technological device which was esthetically unattractive and difficult to operate, to a consumer item, a piece of furniture, housed in an attractive wooden cabinet, with simple controls designed for anyone to operate, which occupied a place of honor in the living room. Prior to the introduction of the high-fidelity, long-playing record in the late 1940s, AM radio offered the highest sound quality available in a home audio device. Luxury models offered large speakers, "electric eye" tuning (a special type of vacuum tube, which provided a visual aid in tuning), mechanical push-button "memory" of favorite stations, sometimes with booklets of adhesive labels for the buttons with station call letters, and -- an inexpensive but impressive feature -- shortwave bands that allowed access to distant, often foreign, stations. Accessory, then factory-installed radios became available for cars.Montage Acoustics BT4480
Montage Acoustics: FM radio microphones
The FM broadcast band can also be used by some inexpensive wireless microphones, but professional-grade wireless microphones generally use bands in the UHF region so they can run on dedicated equipment without broadcast interference. Such inexpensive wireless microphones are generally sold as toys for karaoke or similar purposes, allowing the user to use an FM radio as an output rather than a dedicated amplifier and speaker.
Montage Acoustics reviews
The first commercial FM broadcasting stations
The first commercial FM broadcasting stations were in the United States, but initially they were primarily used to simulcast their AM sister stations, to broadcast lush orchestral music for stores and offices, to broadcast classical music to an upmarket listenership in urban areas, or for educational programming. By the late 1960s FM had been adopted by fans of "Alternative Rock" music ("A.O.R.—'Album Oriented Rock' Format"), but it wasn't until 1978 that listenership to FM stations exceeded that of AM stations in North America. During the 1980s and 1990s, Top 40 music stations and later even country music stations largely abandoned AM for FM. Today AM is mainly the preserve of talk radio, news, sports, religious programming, ethnic (minority language) broadcasting and some types of minority interest music. This shift has transformed AM into the "alternative band" that FM once was. (Some AM stations have begun to simulcast on, or switch to, FM signals to attract younger listeners and aid reception problems in buildings, during thunderstorms, and near high tension wires. Some of these stations now emphasize their presence on the FM dial.) Montage Acoustics
Montage Acoustics HD9001:Shortwave broadcasting
The discovery in the 1920s of the "skip" or "skywave" propagation mechanism, in which high frequency radio waves are reflected back to Earth beyond the horizon by the ionosphere, made the shortwave frequencies above 1 MHz, previously considered useless, a useful band for long distance broadcasting.
Montage Acoustics reviews: AM radio signals
AM radio signals can be severely disrupted in large urban centres by metal structures, tall buildings and sources of radio frequency interference (RFI) and electrical noise, such as electrical motors, fluorescent lights, or lightning. As a result, AM radio in many countries has lost its dominance as a music broadcasting service, and in many cities is now relegated to news, sports, religious and talk radio stations. Some musical genres – particularly country, oldies, nostalgia and ethnic music – survive on AM, especially in areas where FM frequencies are in short supply or in thinly populated or mountainous areas where FM coverage is poor.
Modulation
Frequency modulation is a form of modulation which conveys information over a carrier wave by varying its frequency (contrast this with amplitude modulation, in which the amplitude of the carrier is varied while its frequency remains constant). In analog applications, the instantaneous frequency of the carrier is directly proportional to the instantaneous value of the input signal. This form of modulation is commonly used in the FM broadcast band.Montage Acoustics
Montage Acoustics HD9001: Broadcasting in Europe
In Europe, broadcasting took a different course. Radio transmission had always been more tightly controlled by government in this region, partly because countries were smaller and closer together; for example, in the UK receiving equipment as well as transmitters had to be licensed. There was a feeling in countries like the UK and France that the radio spectrum was a national resource which should not be surrendered to private interests, motivated by profit, who would pander solely to the desire for entertainment. Radio should serve higher purposes of public information and education. In addition, totalitarian countries for political reasons kept mass communications media under government control. So in much of Europe, broadcasting developed as a government-owned or government-supervised monopoly. It was largely funded not by on-air commercial advertising as in the US, but by taxes on sales of radios, and user fees in the form of an annual "receiver license" that anyone owning a radio had to buy.
Montage Acoustics BT4480
The first AM voice transmission
The first AM voice transmission was made by Canadian researcher Reginald Fessenden on 23 December 1900, using a spark gap transmitter. Fessenden is a significant figure in the development of AM radio. He realized that the damped waves produced by the existing spark transmitters, which transmitted text data by wireless telegraphy, could not be used to transmit sound, and continuous wave transmitters were needed. He helped develop one of the first - the Alexanderson alternator. He also discovered the principle on which AM modulation is based, heterodyning, and invented one of the first detectors able to rectify and receive AM, the electrolytic detector or "liquid baretter", in 1902. Montage Acoustics
Montage Acoustics HD9001:AM broadcasting
AM broadcasting is the process of radio broadcasting using amplitude modulation (AM). AM was the first method of impressing sound on a radio signal and is still widely used today. Commercial and public AM broadcasting is authorized in the medium wave band worldwide, and also in parts of the long wave and short wave bands. Radio broadcasting was made possible by the invention of the amplifying vacuum tube, the Audion (triode), by Lee de Forest in 1906, which led to the development of inexpensive vacuum tube AM radio receivers and transmitters during World War I. Commercial AM broadcasting developed from amateur broadcasts around 1920, and was the only commercially important form of radio broadcasting until FM broadcasting began after World War II. This period is known as the "Golden Age of Radio". Today, AM competes with FM, as well as with various digital radio broadcasting services distributed from terrestrial and satellite transmitters. In many countries the higher levels of interference experienced with AM transmission have caused AM broadcasters to specialize in news, sports and talk radio, leaving transmission of music mainly to FM and digital broadcasters.